Wetlands and Water: Benefits, Costs and Possible Opportunities

John K. Pattison-Williams, PhD, PAg Pattison Resource Consulting Ltd / University of Alberta 17 February 2022

Workshop So Far

Priority 4 – Wetland and Wetland Loss

(links with other three: groundwater, access to water and water quality)

Background: Kingman, Alberta

"Natural Capital"

Ecosystem Services

the multitude of benefits that nature provides to society.

Source: Food and Agricultural Organization (2021)

Natural Capital of Wetlands

- Water filtration
- Soil stabilizer
- Flood control
- CO2 sink
- Biodiversity

0.043 t/a/y N 0.009 t/a/y P 6.5 t/a/y 1200 m3/a/yr ~ 4 t/a/y ducks as indicator

What does this mean to you??

At the current rate of loss, every year:

- 45 semi-truck loads of fertilizer
- 9 million cubic meters of flood water
- 50,000 tonnes of soil lost due to erosion
- 6,000 cars on provincial roads

And yet....

Familiar sight...

Familiar story...

Drainage increases the amount of land available to farm and improves access to all areas of a field

This increases production and makes crops more viable, especially in lowland areas that may be too wet to farm otherwise

Why? Multiple Perspectives

FLOODING

Unseeded acres Nutrient export Infrastructure damage

Downstream and upstream frustration

Significant financial resources have been required to compensate for these damages

LAND USE CHANGE

So...what do we do about wetlands?

• Biophysical science matters

• Finance and economics matter

Human perspectives matter (both local and beyond)

ECONOMICS: Business Case Approach

A story to justify a financial investment

Purpose:

- 1. Capture Existing Knowledge
- 2. Support Wise Land Use Decisions
- 3. Vehicle for moving policy forward
- 4. Consistent messages to different audiences

$$ROI_{Land Use} = \frac{\sum_{t=1}^{T} [C + N + P + Bio]}{(1+r)^{t}}$$

$$\frac{\sum_{t=1}^{T} [(Profit - Inputs)_{Crop} + Restoration]}{(4+r)^{t}}$$

EXAMPLE 1: Smith Creek, Saskatchewan

Downstream runoff causing financial and social problems!

Smith Creek Results

Flood Returns

Social Returns

EXAMPLE 2: Black River, Ontario

2008: 7,590 ha remain

46% wetland loss

Existing wetlands

Wetland loss by 2008

Black River Results

P and **N** Returns

Social Returns

- Still comparable to water treatment facility upgrades

Loss and Restoration Scenarios

- In 2008 the Sutton WPCP removed 2,480 kg of TP. Losing approx 25% of existing wetlands would negate this municipal investment in water treatment
- Proposed plant upgrades
 - Will remove an additional 62 kg/yr.
 - If just 52 ha of wetlands are lost negate this additional removal capacity.

- Restoration is financially and socially expensive
- Keep what's already on the land
- Risk and liability: lawsuits, inability for insurance
 - Locally
 - Interprovincially
 - internationally

Regulation: Province of Alberta

CHALLENGE: Uncertainty in Agriculture

Fig. 2 Alberta Farm Income Indicators, 2012-2016

Three bad years High off-farm income High debts Increasing land prices Static grain prices (?)

2021 Farm Cash Receipts Second Quarter

Alberta Highlights

Agri-Food Statistics Update: Issue FI21-3

Increase acreage Increase productivity Keep rural communities alive Frustration with government

CHALLENGE: Agricultural Costs of Wetlands

EXAMPLE 3: Profitability Mapping

Results: Profitability Mapping

Results: Summary

	Average (\$/acre)				
Producer	Input Cost	Field-level Profit	Profit Excluding Wetland Basins	Profit within Drained Basins	Profit within Intact Basins
1	\$323.50	\$257.70	\$264.43	\$34.60	\$202.17
2	\$274.67	\$234.70	\$254.45	-\$145.31	\$35.83
3	\$297.78	\$147.28	\$155.57	\$76.12	\$148.85
All Producers	\$298.65	\$192.06	\$203.98	\$55.46	\$90.91

Primary Findings

- Drained wetlands
 - 56% of basins yielded a financial loss (90% for Producer 2)
 - 70% of basins produce less than the desired \$100/acre benchmark
- Intact wetlands
 - 30% of basins yielded a financial loss
 - 55% of basins produce less than the desired \$100/acre benchmark

Primary Findings - Interviews

- Producers were not surprised to learn that wetland basins produced lower yields, but were surprised by the magnitude of losses in some areas of their fields
- All producers indicated that the results will not dissuade them from continuing with the status quo
 - There was still a general sense that draining and consolidating wetlands leads to higher productivity on average and over the longer term
 - · Field-level operational efficiency was identified as an critical factor influencing decision-making

CHALLENGE: Mixed Messages (Alberta)

Drainage is Good

Irrigation Districts Act (1914) Drainage Districts Act (1921) Water Resources Act (1931)

Irrigation in Alberta

Source: Government of Alberta

Drainage is Bad Alberta Water Act (1999) Wetland Policy (2013)

FUTURE CONSERVATION OPPORTUNITIES?

Economic Instruments: Payment for Ecosystem Services

Income Reliability

Market Access

Market Access, Canadian Response

- No programs in Canada that *financially* penalize agricultural producers for draining wetlands, even if such action is illegal under government frameworks.
- Lots of Round Tables: Canadian Roundtable for Sustainable Beef; Canadian Roundtable for Sustainable Crops; Roundtable for Sustainable Soy
- Certified Sustainable Beef Framework (2017), the first global standard of this kind.
- Canadian Food Print Initiative
- The ISCC-Plus system is active for Canadian producers to access the EU biofuels market. Small price premium explicitly prohibits wetland conversion.
- Increasing role of sustainability standards for Canadian agriculture will be about market access opportunity, not price premiums.

Societal Benefit: "Good Neighours"

1. Climate Smart Solutions funding

- 2. Wetland Policy and Approvals
- 3. Conservation Easements (DUC)
- 4. Grassland Support (Nutrien pays for seed, \$35 acre payment)
- 5. Roundtable for Sustainable Crops

Personal Choice

Pattison-Williams Lease # 12043

Ditch Plug Location

CONCLUSIONS

- Water and wetlands are complicated issues
- Business Case Approach is important
- Flood damages to downstream farms and municipalities
- Power dynamics between rural and urban perspectives
- Private and public property rights

Acknowledgements

- Institute for Wetland and Waterfowl Research
- The Canada Research Chairs program
- Canada Excellence Research Chair in Water Security
- Department of Resource Economics and Environmental Sociology, University of Alberta
- Centre for Hydrology, University of Saskatchewan
- Prairie Habitat Joint Venture
- Fiera Consulting
- Photo Credit: Marilylle Soveran and Davin Martinson

